Abstract

Stress - another possible mechanism of neurotoxicity in neurodegenerative diseases

Maria Filomena Xavier Mendes 1; Paulo de Oliveira 2; Maria Solange Gosik 3; Renata Garcia Lino 4; Raquel Bruno Kalile 5; Danielle da Silva Barbas 6; Romeu Carillo Jr 7

1 - Master in Neurology - UFRJ; Coordinator of ABRAH courses in Rio de Janeiro; Professor of ABRAH courses; Invited professor of optional disciplines of homeopathy at UFF; Homeopathic doctor of SMS-RJ.
2 – Professor University of Évora, Portugal; graduated in homeopathy at IMT; Internship at ABRAH in partnership with IMT.
3 - Homeopath and Pediatrician; National coordinator of ABRAH courses; President of ABRAH; Project Coordination Assistance “cute and healthy” by the Associação Abrigo Rainha da Paz; Homeopath responsible for care in the CAPS for juvenile children Taboão da Serra, SP.
4 - Master in Collective Health – UFF; Pediatric and Homeopathy physician; Supervisor of homeopathy ambulatory of Abrah in Rio de Janeiro; Doctoral student in public health – UFRJ.
5- Master in Family Health; Homeopath by ABRAH; Supervisor of homeopathy ambulatory of Abrah in Rio de Janeiro.
6 – Professor University of Brasilia - UNB; Coordinator of the pediatric medical residency –HUB; Master in Collective Health - UFRJ; Doctoral student in public health- UNB; Pediatric and Homeopathy physician – ABRAH; Professor of ABRAH courses
7 - Head of the Homeopathy Clinic at Hospital do Servidor Público Municipal de São Paulo - HSPM; Course Advisor extension da Abrah – Brazil

*Corresponding author: filoabrah@yahoo.com.br - https://orcid.org/0000-0002-4785-8237

Abstract

Background: The literature associates oxidative stress with the production of free radicals, which lead to neurodegeneration. They present innumerable hypotheses, among which are abnormalities in the functioning of the hypothalamic-pituitary-adrenal axis, neurotoxic effects and neuronal oxidative damage. Clinical observation has shown that in neurodegenerative diseases such as Multiple Sclerosis (MS) and Amyotrophic Lateral Sclerosis (ALS) there is a report of prolonged or violent emotional stress preceding the symptoms. Aims: Using the Carillo Complex Systems Model, present some possibilities on how stress can contribute to neurodegeneration. Methodology: Nine cases of ALS and six cases of MS were evaluated, pathologies already classified as belonging to syphilinism. Literature review on stress and neurotoxicity carried out. Results and discussion: Syphilinism is instability with a predominantly intrinsic origin to the system with a chronic character. This diathesis is characterized by a dissipative deficiency, predominantly hepatic, to the processing of certain elements or potentially toxic substances with exogenous origin or endogenous. Such non-processed substances are unstable factors in the system, with greater affinity for certain tissues, like the nervous system. Among the toxins, we find alcohol, esters, formaldehyde, aloe, ketones, aldehydes, etc. The final hepatic metabolism of cortisol results in cortic acids and cortol, which use the same enzymatic system as alcohol, and can be considered syphilinic toxins. Ethanol can act directly at the circadian rhythm, disrupting it and generating stressful substances such as cortisol, regardless of an external event, increasing the toxin level. The inflammatory process generated by the production of free radicals and metabolic abnormalities, including the reduction of neuropeptide Y that modulates inflammatory activity in the nervous system, leads to changes that can result in neurodegeneration. Conclusion: Inflammation caused by toxins from prolonged/violent emotional stress at the circadian rhythm, disrupting it and generating stressful substances such as cortisol, regardless of an external event, increases the toxin level. The inflammatory process generated by the production of free radicals and metabolic abnormalities, including the reduction of neuropeptide Y that modulates inflammatory activity in the nervous system, leads to changes that can result in neurodegeneration.
stress can lead to several changes in syphilitic individuals, due to failure in the dissipative process, including neurodegeneration.

**Keywords**: Stress, neurotoxicity, Complex Systems Model, Syphilinism

**References**