Original Article

Viscum album L. homeopathic mother tinctures: Metabolome and antitumor activity

Michelle Nonato de Oliveira Melo1,2*, Adriana Passos Oliveira 1, Rafael Garrett 2, Patrícia Zancan3, Alan Clavelland Ochioni 3, Mirio Grazi4, Hartmut Ramm 4, Tim Jaeger4, Stephan Baumgartner 4,5, Carla Holandino 1

2 - Laboratório de Metabolômica (LabMeta/LADETEC), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro - RJ, Brasil.
3 - Laboratório de Oncobiologia Molecular (LabOMol), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro - RJ, Brasil.
4 - Society for Cancer Research, Hiscia Institute, Arlesheim, Switzerland.
5 - Instituto de Integrative Medicine, University of Witten-Herdecke, Herdecke, Germany.

*Corresponding author: michellenonato.far@gmail.com - https://orcid.org/0000-0003-0984-128X

Abstract

Background: *Viscum album* L. is a semi-parasitic plant with antitumor activity attributed to the aqueous extracts. However, European *V. album* ethanolic extracts (VAE) have also demonstrated *in vitro* activity in tumor models. Aims: Evaluate the metabolic profiles of fifty VAE harvested during summer and winter seasons and their antitumor activity through 2D and 3D models. Methodology: VAE were prepared by maceration from: *V. album* subsp. *album* growing on *Malus domestica*, *Quercus* sp. and *Ulmus* sp.; *V. album* subsp. *austriacum* from *Pinus sylvestris*; *V. album* subsp. *abietis* from *Abies alba*. Chemical analyses were performed through liquid chromatography coupled with high resolution mass spectrometry and Partial Least Squares Discriminant Analysis (PLS-DA) was performed in the Metaboanalyst 4.0. The antitumor potential of the selected VAE was evaluated in 2D and 3D models (MDA-MB-231 cancer cells) by MTT, crystal violet and glycolytic pathway analysis. Results and discussion: The first 3 principal components in PLS-DA explained 60% and 40% of data variation in positive and negative modes respectively. Three groups were formed and showed chemical similarity among *V. album* subspecies. The compounds responsible for group separation were tentatively identified as: pinobanksin or naringenin hexoside; isorhamnetin-3-hexoside, meglutol and different amino acids. The summer VAE at 0.5% v/v induced higher cytotoxic damage than the winter preparations, and *Abies alba* and *Quercus* sp. VAE promoted 49% and 42% reduction of tumor viability in 3D model (72h incubation), respectively. MDA-MB-231 glycolytic pathway in 2D model showed a decrease in the glucose consumption and extracellular lactate production. Also, PK (6- phosphofructo-1-kinase) and PK (Pyruvate kinase) activities were inhibited by *Abies alba* and *Quercus* sp. VAE at 48h of incubation. Conclusion: VAE extracts showed different metabolomes and the glycolytic pathway should be an important target involved in the inhibition of tumor growth by these extracts.

Keywords: *Viscum album*, antitumor, metabolome, glycolysis

© International Journal of High Dilution Research.
Not for commercial purposes.

Cite as: Int J High Dilution Res. 2022; 21(3):33-33. https://doi.org/10.51910/ijhdr/v21i1.1195