Homeopathic medicines influence fungal adhesion and cellular oxygen metabolism of MDCK and MA104 cell lines

Carla Holandino¹, Venicio Veiga², Gleyce Moreno Barbosa¹, Fortune Homsani¹, Camila Monteiro Siqueira¹,³, Antonio Galina⁴, Tatiana El-Bacha⁵, Jose Nelson Couceiro², Andre Luis Souza dos Santos²

(1) Laboratório Multidisciplinar de Ciências Farmacêuticas, UFRJ, Rio de Janeiro, Brasil
(2) Instituto de Microbiologia Professor Paulo de Góes, UFRJ. Rio de Janeiro, Brasil
(3) Instituto Federal de Educação, IFRJ. Rio de Janeiro, Brasil.
(4) Instituto de Bioquímica Médica, UFRJ, Rio de Janeiro, Brasil.
(5) Instituto de Nutrição Josué de Castro, UFRJ, Rio de Janeiro, Brasil

Background: Fungal and viral infections constitute a serious public health problem, because morbidity and mortality rates of these diseases have been increasing in the last decades [1,2]. The resistance to antifungal and antiviral agents [3,4] currently available in the pharmaceutical market motivates the development of new therapies, including complementary and alternative health practices [5,6]. In this context, our research group has deepened the knowledge about the therapeutic potential of homeopathy using different models [7-9]. Homeopathic medicines undergo a process of serial dilution whereby the final remedy contains extremely low amounts of the active substance, with pharmacological action, and, consequently, cannot be considered merely placebos [10]. Aims: In the present study, we evaluated the potential of two different homeopathic medicines, named Influenzinum RC (compounded with influenza A virus) and Candida albicans RC (compounded with Candida albicans yeasts), which are prepared according to Brazilian homeopathic procedures [11]. Methodology: The biotherapics (12x, 30x) were prepared from Candida albicans yeasts [7, 11] and from influenza virus A H3N2 [6,11]. The cellular parameters evaluated after biotherapeutic treatments were: cytotoxicity by MTT assay; PFK-1 activity; and maximum respiratory capacity. Results: Our results showed that Influenzinum RC did not cause cytotoxic effects but induced morphological alterations, increased (p < 0.05) mitochondrial activity, and significantly modified (p < 0.05) PFK-1 activity of MDCK cells. Additionally, using high-resolution respirometry we could detect a maximum respiratory capacity when these cells were treated with Influenzinum RC, despite a well-preserved ultrastructure of their mitochondrial organelles. In contrast, when MA104 cells were treated with Candida albicans RC, a significant decrease in cellular respiratory capacity as well as in yeasts adhesion rate was detected. Conclusions: These results indicate that homeopathic medicines modify important cellular and metabolic aspects of mammalian cells and these alterations should be responsible for the therapeutic potential of these drugs.

Keywords: Candida albicans, influenza A virus, homeopathy, in vitro models.
References


