Method for microscopic monitoring of homeopathic medicines

T. V. Novosadyuk1*, V. V. Tsvetkova12

1Polevet Veterinary Clinic Research Center, Saint Petersburg, Russia, 2Medical Academy of the State of Kirov, Kirov, Russia, 3Griffin Breeding Farm, Leningrad, Russia

* Corresponding author vethom@mail.ru

Abstract
We described microscopic observation of the effects of potentiation for the first time in 2002, and presented the results at the 2013 GIRI meeting. The study continued with the development of a visual quality control method using optical microscopy. The theoretical grounds underlying this method derive from high dilution research conducted by Komissarenko [1,2].

A ‘crushed’ drop is prepared from a potentized agent with one drop of black ink for microscopy with 20 and 40 magnification. Control consisted in a similarly of a drop of water and a drop of black ink. Visual estimates were performed according to the nature of the black ink particle movement, considering spin rate, randomness severity and/or motion directionality. Specimens were animal, vegetable and mineral origin, in cultivations from 1 to 1500 cH prepared by different manufactures from 1995 to 2016.

For many years we looked for a way to visualize the ink particle motion under microscope by means of video files. However, this procedure proved to be too difficult from the technical point of view. Now this problem is solved. Thanks to the collaboration of specialists from St. Petersburg and Russia, a number of video files could be made, that demonstrate the difference of the particle motion black ink in various homeopathic remedies. In this presentation, we will show video files depicting the Brownian motion of ink particles in water and diluted up to 1500cH. All samples had characteristic patterns of ink micro particles motion that were different between control and test samples and also between test samples of previous and consequent dilutions. Gradual acceleration of micro particles spin is observed in samples from 1 to 10 cH. The movement remains chaotic. Spin velocity stops increasing from 10 cH to 30 cH, however movement of particles becomes unidirectional. This effect continues to increase in other samples up to 1500 cH. No gaps/leaps of these effects were found in consecutive survey of homeopathized remedies of 1 to 1500 cH. These changes are the same in all the investigated homeopathic medicines. The observed phenomenon was so significant, that we could distinguish the level of potentiation of the various homeopathic preparations.

The directed motion of ink particles in potentized solutions fades when in storage. The molecular motion becomes chaotic again, i.e., it recovers the Brownian pattern when the solutions are agitated. A few shakes are sufficient to completely reconstruct the typical pattern of the original homeopathic preparation. In destroyed homeopathic medicines the pattern of chaotic motion of particles of ink is preserved irrespective of the amount and strength of agitation.

The method of visual quality control described here easily solves issues related with the performance, storage and use peculiarities of homeopathic medicines.

Cite as: Novosadyuk TV, Tsvetkova TV. Method for microscopic monitoring of homeopathic medicines. Int J High Dilution Res. 2018; 17(1): 30-31

https://doi.org/10.51910/ijhdr.v17i1.887
To conclude, effects of potentiation can be detected under optical microscopy. The method is simple to perform and allows distinguishing homeopathic medicines in a reliable manner. Therefore, this technique has potential for application in practice and research.

Keywords: Crystallography, plants, homeopathy, growth

References

© International Journal of High Dilution Research.
Not for commercial purposes.